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Abstract. We present the exact ground-state wave function and energy of the generalized 
Hubbard model, subject to the condition that the number of doubly occupied sites is conserved, 
for a wide, physically relevant range of panmeters. For one hole a d  one doubly occupied site 
the existence of the ferromagnetic ground state is proved which allows one to determine the 
critical value of the on-site repulsion corresponding to the point of metal-insulator transition. For 
the onedimensional model the exact solution far special values of the p m e t e r s  is obtained. 

1. Introduction 

The Hubbard model is the generic model to describe correlations in narrow-band systems [I]. 
The on-site repulsion is due to the matrix elements of the Coulomb interaction corresponding 
to the on-site Wannier states while the other matrix elements are neglected. However, the on- 
site repulsion can be sufficiently strong and the values of the matrix elements corresponding 
to the pair of nearest-neighbour sites can be comparable with the value of the simplest 
nearest-neighbour hopping amplitude. The Hamiltonian of the model which is often referred 
to as a generalized Hubbard model contains the interaction terms of the fourth order in the 
electron creation and annihilation operators corresponding to the nearest-neighbour sites. 
The Hamiltonian is 

where U = I .  2 is the projection of~spin, ni, = c$ci,, ni = nli +nu and (ij) denotes 
the pair of nearest-neighbour sites. The generalized model (1) has been studied previously 
by several authors [2, 3, 41. The other models with a similar kind of hopping term were 
considered in [5, 61. Even for X, V << U the presence of interactions which directly couple 
nearest-neighbour sites should lead to new effects. For example the correlated hopping 
terms are believed to play an essential role in the formation of high-T, superconductivity 
[2]. In the present paper we consider the Hamiltonian ( I )  at X = f. At this particular value 
the model is simpler than the conventional Hubbard model. Note that the corresponding 
region in parameter space is quite realistic in view of the estimates of these parameters for 
different systems (for example, see [3, 41 and references therein). At half filling the ground 
state of the model at X = z can be found exactly in any dimensions in a wide range of 
the parameters f ,  U, V .  We also study the metal-insulator transition at the critical value U, 
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which can be found exactly in our case in contrast to the Hubbard model where the Mott 
picture of the metal-insulator transition [71 is not directly applicable at least for a simple 
square or cubic lattice where presumably (in spite of the predictions based on the Gutzwiller 
approximation [8]) the system is the antiferromagnetic insulator at arbitrary U .  Recently 
the same model was studied by Strack and Vollhardt [3] with the help of supersymmetric 
representation. We show that the wave functions proposed are in fact the ground states of 
the model in a range of parameters which is much wider than the region found in [3]. 

First, we show that at half filling the exact ground state of the model at X = t and 
U > z max(2t, V )  (z is the coordination number of the lattice) is a highly degenerate state 
without the doubly occupied sites and the system is a paramagnetic insulator. For the on-site 
repulsion U < Uc, where U, is the critical value, which is not necessarily coincident with the 
obtained bound, the creation of holes and doubly occupied sites is energetically favourable. 
At this point the transition to the metallic state takes place. In complete analogy with 
the Nagaoka theorem for the infinite-U Hubbard model [9] we prove that in the sector of 
Hilbert space with one hole and one doubly occupied site the state with the lowest e n e r a  is 
ferromagnetic. We show that at V <-2t the critical value is determined by the ground-state 
energy of the problem with one hole and one doubly occupied site and U, = 2zr. At the 
present time the stability of the Nagaoka state at finite concentration of holes is not proved. 
However, it is supposed to be the correct ground state at sufficiently small concentration of 
holes [IO]. Assuming the stability of the ferromagnetic state at finite concentration of holes 
and doubly occupied sites at low concentration of holes we find the density of holes below 
the point of the metal-insulator transition. For a bipartite lattice we find another region 
of the parameters where the determination of the ground state is possible. For a square or 
cubic lattice at U < 2zV z max,L2t. V )  the ground state is given by the state with the 
electrons occupying only one of the sublattices. In particular, at V > 2r the ground state is 
known exactly at arbitrary U .  The transition between two different ground states take place 
at U = z V .  Finally we consider the generalized Hubbard model at X = t in one dimension. 
The dependence of the energy on the total spin for an arbitrary number of holes is studied. 
These results may be useful in the context of study of the stability of the ferromagnetic 
state for the infinite-U Hubbard model in higher dimensions. It is shown that the model is 
exactly solvable at V = 0. We also comment on the behaviour of different generalizations 
of the model (2)  which include the antiferromagnetic coupling. A brief description of the 
results presented in section 2 was given in [ll]. 

2. Generalized Hubbard  model in arbitrary dimensions 

Consider the model ( I )  at half filling (ii = i i l  + i i z  = 1) at X = t. The Hamiltonian 

where HC stands for Hermitian conjugate, conserve,s the number of doubly occupied sites 
i? = rinl inz;:  [fi ,m = 0. The eigenstates of €? correspond to a definite number 
of doubly occupied sites N which a t  the half filling coincides with the number of holes. 
First, let us prove that at U > z max(2r. V )  the ground state corresponds to N = 0. It is 
convenient to express the Hamiltonian (2) in terms of the fermionic creation and annihilation 
operators of the holes (cr, ci) and the doubly occupied sites (d:, di) defined starting from the 
ferromagnetic state IF) = Ci c;lO). The up-spin electrons are described by the Holstein- 
Primakoff hard-core Base operators (b:, bi). To obtain the interaction term -V one can 
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make the following substitution: 

nl;  = n, + nd;  nz; = 1 - ni - n, . 

The Hamiltonian is 

fi = -t c ( c + c j  +d:d,)(b!b; + (1 - n;)( l  - nj))  + HC 
( i j )  

where n,.; = cTci, ndi = d:di, ni = b+bi, and the constraint nc; + nd; + n; < I which is 
equivalent to the infinite on-site repulsion between the particles is implied. fi = nd; is 
the number of doubly occupied sites and the energy NU is due to the last term in equation 
(2). 

2.1. Variarional theorem 

The upper bound for the ground-state energy Eo < z V L J 2  ( L  is the number of lattice sites) 
of the Hamiltonian (2) can be obtained using the variational wave function with singly 
occupied sites 

where L and L' are arbitrary disjoint sets of lattice sites which together build up the total 
lattice. In the representation (3) I@) is the state without the fermions. It is easy to derive 
the lower bound for the energy EO. The Hamiltonian (3) can be considered as a matrix Hup 
where the indices CY. f i  enumerate the set of possible configurations of particles on the lattice 
CY = (i !... i#l j ,  ... j N 1 1 ,  ... I n n )  where i, j ,  1 are the coordinates of holes, doubly occupied 
sites and hard-core bosons respectively (see the appendix). One can see that due to the 
Fermi statistics of c and d particles the non-diagonal matrix elements of Hep corresponding 
to the kinetic-energy term of the Hamiltonian (3) are equal to f t .  Clearly, for the Bose 
statistics these matrix elements would be equal to -r. The diagonal matrix elements are 
determined by the second term of equation (3). The following theorem can be easily proved. 
For each of the eigenvalues E of any Hermitian matrix Hub at least one of the inequalities 

is satisfied. In particular. for the restriction on Eo one should take the minimal value of If,, 
( -zVN).  The right-hand side of this inequality is determined by the number of hopping 
processes allowed for a given state CY. Since the total number of c and d particles is 2N 
the maximal value of the right-hand side of equation (5) is 2zrN. In this way we find the 
following lower bound for the ground-state energy: & ( N )  > (-2zt - z V + U ) N + z V L J 2 .  
One can further improve this estimate in the following way. For example, the hopping of 
a c particle to the nearest-neighbour site occupied by a d particle is not possible and one 
should not take into account these terms in the right-hand side of equation (5). However, 
in this case the contribution -V to the diagonal matrix element H, ,  does exist. In the 
opposite case of isolated c and d particles the binding energy is absent while the hopping 
processes are possible. Thus we obtain the following lower bound for the energy: 

E o ( N )  > (-zmax(Zt, V ) + U ) N + z V L / 2 .  (6) 
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Taking into account the upper bound Eo < z V L / 2  and equation (6) we see  that at 
U 2 z max(Zr, V )  the ground-state wave function does not contain the holes and the doubly 
occupied sites. N = 0, and the energy is exactly equal to Eo = ;VL/2.  The ground state 
is 2'-fold degenerate and is given by equation (4). For comparison the bound for U found 
in [3] is 4zf +zV.  The authors use the following method to obtain the lower bound for the 
energy. With the help of the operators 

Pjj,  + - .  - c , ~ (  I - n  g-o) + cj,(l - nj-.,) Qt = cLni-, + cznj-. 'I" 

the Hamiltonian can be represented in the form 

Since the average of the first term in equation (7) over the ground state is positive definite 
the bound U > 4zr + zV is obtained. Clearly for an arbitrary lattice. at t ,  V < U and a 
small deviation r-X # 0 the degeneracy is absent and the model (1) reduces to an effective 
Heisenberg model with antifenomagnetic coupling constant 4(f - X), /V.  For a bipartite 
lattice one has the antiferromagnetically ordered ground state. 

For U < U, the creation of holes and doubly occupied sites take place. We shall see that 
at V < 2t the critical value Uc is determined by the value of the lowest energy for the state 
with one empty and one doubly occupied site ( N  = I). This problem can be solved exactly 
in two and three dimensions. The Hamiltonian (3) has the same form as an analogous 
Hamiltonian for the infinite-U Hubbard model away from half filling. The only difference 
is the absence of d fermions in the latter case. The hopping term for the bosons is absent as 
well and their interaction with the fermions has the same form. According to the Nagaoka 
theorem [9 ] ,  for one hole the ground state of the infinite4 Hubbard model is ferromagnetic 
(the total spin is maximal). In our case it is possible to prove that at N = 1 i.e. for one 
bole and one doubly occupied site the ground state is ferromagnetic. Following the original 
Nagaoka proof consider the hopping process in which the hole and the doubly occupied site 
start from given positions and come back to the same positions after a number of steps. The 
configuration of spins (the bosons) can be different in the initial and the final states. For 
one hole the corresponding energy-dependent self-energy part introduced in 191 is positive. 
The same would be true for an arbitrary number of holes if the holes obeyed the Bose 
statistics in the sense of the Hamiltonian (3). Clearly in our case the positivity condition is 
satisfied since for N = 1 the statistics of c and d particles which represent the two different 
species of fermions is not important. The other steps of the Nagaoka proof can be applied 
without modification (the presence of the attraction -V in equation (3) is not important 
either). Thus at N = 1 the state with S = S,, - 1 which is the maximal total spin for a 
state with one hole is the ground state of the system. In the representation (3) that means 
that the number of bosons is equal to zero for the projection of spin SL = -(S" - 1). The 
ground-state energy of two particles has the form Eo(N = 1) = -2zt+U+a/L, where the 
last term is due to the interaction of c and d particles. Let us suppose that the interaction 
part of the energy is positive, a z 0 (the corresponding condition for the parameter V will 
be found later). Then the critical value of U is 

Lie = 2zr. (8) 

At U > U, the ground state is given by equation (4) and at U .= Uc the creation of holes is 
energetically favourable. The critical value (8) is the point of the metal-insulator transition. 
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Before solving the two-particle problem let us comment on the behaviour of the system 
at finite density of c and d fermions. At the present time the stability of the Nagaoka state 
for the infinite-repulsion Hubbard model at finite concentration of holes is. not proved. It is 
supposed that the ground state is ferromagnetic at sufficiently small concentration of holes 
(for discussion see [IO]). In our case we will also~assume the stability of the ferromagnetic 
state (S = S,,, ~- N )  at sufficiently small density of holes and doubly occupied s'ites 
p = N / L .  Then at U < 2zt and 12zf - U1 + 0 the density p + 0 and the analogue of 
the Nagaoka state is realized. The system of two species of interacting fermions at equal 
density p should be considered. At low density the ground-state energy can be evaluated as 
a series in the small parameter ( 1  In p1-I and p ' /3  respectively in two and three dimensions). 
At low density the dependence of the energy on p has the form 

E f L = - ( 2 z r - U ) p + E o ( p ) + ~ a @ ) p 2  (9) 

where the second term is due to the Fermi statistics. In  the lowest order E&) = 4ztp2 in 
two dimensions and E&) = ( f65/3z4/3)tp5/3 in three dimensions. In the lowest drder in 
p the function a ( p )  is determined by the two-particle scattering amplitude at low energy. 
The scattering amplitude can be expressed through the interaction energy of two particles of 
different species a f L  in the finite volume L. In fact the low-density limit of a ( p )  coincides 
with the value of the parameter a .  The behaviour of the function a(p) is different in two 
and three dimensions. In three dimensions it is constant in the lowest order in p while in 
two dimensions a(p )  = 8zt/l In p/+O(r/(Inp)2) [12]. The ground-state density of holes is 
determined from the condition of the minimum of the expression (9). In the limit U + 222 
the minimum is determined by the first two terms in equation (9). For example, in two 
dimensions 

2 Z t  - U 
PO = - 4z 

with accuracy up to the terms of order -1 j In po. One can also take into account the leading 
corrections in po in this formula. PO is small at small deviation of U from the critical value 
(8) in agreement with our assumption about the stability of the ferromagnetic state. Although 
the description of the system (3) at arbitrary number of bosons is not possible it will be 
shown that at 2zt - U + 0 the minimum of the energy as a function of p found from 
equation (9) is the correct ground-state energy of the system in agreement with equation 
(8). 

2.2. Solution of the two-particlp problem. 

Let us proceed with the solution of the two-particle problem. The interaction potential (3) 
contains the infinite on-site repulsion 6 + 00 and the attraction of strength V at nearest- 
neighbour sites. Let us consider the case of the three-dimensional cubic lattice. The ground 
state 'corresponds to the total momentum of two particles equal to zero. One can seek 'the 
wave function in the form 

where c: = L-'Iz xi cikFc:. The function (1 1) is the eigenvector of eigenvalue E if the 
function F(k)  satisfies the Schrodinger equation 

1 
( E  - Ztc,)F(p)  = (I? - v+) F ( k )  

k 
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where E k  = -2c:=, cosk,. Let us define the function J(k) = ( E  - 2 t ~ ) F ( k ) .  Equation 
(12) takes the form 

In order to solve the equation (13) for the ground-state energy EO = -2zr + a / L  let us 
extract from the sum the term with k = 0, which is most divergent for L + CO. We can 
also substitute the value 2teo (€0 = - z )  for E in the sum over k # 0 in equation (13) 
since in three dimensions the energy difference 6k - €0 is at least of order - L-2/3 and the 
interaction correction is of order - 1/L. We get 

Defining the new function r(k) = a J ( k ) / J ( O )  we obtain from (14) the equation 

which is nothing but the equation for-the scattering amplitude at zero energy r(0) = a. The 
sum in equation (15) can be replaced by an integral. The solution of the equation (15) can 
be represented in the form r (k )  = ro + €kr[. Substituting this function into equation (15) 
we get two equations for the unknown constants ro, rl.  In the limit 6 -+ 00 the result of 
the calculations for the simple cubic lattice ( z  = 6) has the form 

, , , ,  ,, 
z(2t - V )  

wz - V ( W z  - 1)/2t 
a =  

where W = 0.2527 stands for the Watson integral 

1 
3 -cos kx - cos k, - cos kz 

W = 1 3 /* /”* dk, dk,  dk, 
W n )  -n -I? --n 

The expression (16) is valid at V c 2. At V = 2t the amplitude a vanishes which indicates 
the existence of the two-particle bound state at V > 2t. Vanishing of the interaction 
correction to the energy at V = 2t can be seen from analogy with the two-magnon problem 
in the ferromagnet where in the ground state the total spin should be maximal. The same 
conclusion can be made for two dimensions. To calculate the parameter a one should 
substitute the sum 

1 
--InL 

1 1 - 
L Z O - S O  4a 

for W in the formula (16). The corrections to the equation (15) are of order (11 In L)2 and 
the terms of that order in equation (16) cannot be fixed. However, the expansion in I / ln  L 
breaks down only at 2r - V - I / ln  L and at these values of V the perturbation theory in 
2t - V can be used since at V = 2t the ground-state wave function is known: $c$d:IO) 
(the analogue of the S = S,,, state in the ferromagnet; & is the Gutzwiller projector). As 
in 3D the interaction correction changes sign at V = 2t and the bound-state’solution appears 
at V > 2t. 
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2.3. F o r m l  proof of the equation (8) 

Finally it is necessary to show that. whether or not the Nagaoka state is realized at a given 
denslty~p, the correction to the energy, 

is strictly positive &(p)  > 0 and does not vanish in the thermodynamic limit at p jL 0. 
That means that the density is really small in the neighbourhood of the point of metal- 
insulator transition. We have to obtain the lower bound for &(p)  (17). Let us modify the 
Hamiltonian (3) in such a way as to decrease the corresponding ground-state energy. First, 
let us replace in equation (3) the repulsion V C(n,incj + ndindj )  at nearest-neighbour sites 
by the attraction of the same form (V -+ -V)  and then make the substitution V + 21 so 
that the resulting interaction takes the form 

Second, instead of fermions, consider the particles c, d ,  obeying the Bose statistics. Since 
for bosons the Nagaoka state is the ground state at arbitrary density and the Hamiltonian 
is symmetric with respect to the replacement c i+ d ,  the ground-state wave function 
4(il ... ia(j, . , .  j,) which is the totally symmetric function of its arguments coincides with 
the ground-state wave function of the Heisenberg ferromagnet in the representation of the 
Holstein-Primakoff bosons with the projection of spin S' = S,, - N and S = Sma. In 
fact, the corresponding wave function, which is the positive definite and totally symmetric 
function, is the eigenstate of the modified Hamiltonian. Actually it is the ground state of 
the modified Hamiltonian since for the wave function which changes sign the substitution 

@(i, ... iNIj1 ... j N )  + I@(il ... i ~ l j j  ... j ~ ) l  

would lower the energy and the positive-definite eigenstate is unique because of the 
orthogonality condition. Note that these considerations can be a basis of a simple proof 
of the Nagaoka theorem both in our case and in the case of the infinite-U Hubbard model 
[9]. Therefore the lower bound for the energy is (-2zt + U ) N  and we find that &(p)  > 0. 
Clearly at finite density E @ )  does not vanish in the thermodynamic limit. Thus it is proved 
that at 2zt - U --f 0 the value of p minimizing the energy po -+ 0. Consequently. at 
V c 2t the point of metal-insulator transition is indeed given by equation (8). 

According to the Mott picture for large coupling U the density of states exhibits two 
bands with the centres separated by U. In the absence of electron correlations the width of 
each Hubbard band is zf, and the gap between the bands is expected to vanish at U / Z z t  = 1. 
The Hubbard bands are usually obtained in the framework of a special single-particle Green 
function decoupling approximation scheme proposed by Hubbard [l], the HartreeFock- 
type approximation which was exact for zero interaction energy or zero bandwidth (which 
amounts to a specific decomposition of a certain Green function and has no justification; for 
example see [I31 for a critical discussion). However, strictly speaking, in the conventional 
Hubbard model the very notion of the Hubbard bands is justified only in the limit U + 00, 

since the number of doubly occupied sites is conserved only in this limit. In our model the 
number of doubly occupied sites is conserved and the notion of the Hubbard bands has a 
precise meaning beyond the framework of any approximation. Note also that our results 
can be used to explain the results of the numerical calculations for a small lattice [ 141. 
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2.4. Ground state for  a bipartite lattice 

For an arbitrary b ipar t i te  lattice one can find another region of the parameters where the 
determination of exact ground state i s  possible. For example consider the simple square or 
cubic lattice. The wave function which corresponds to a,charge-density wave with maximal 
order parameter, 

Ix) = nc;C;lo) (18) 

where A is one of the sublattices, is an eigenfunction of e. The wave function (18) can 
be used to obtain an upper bound for the energy: Eo < U L / Z .  To obtain the lower bound 
it is convenient to define the operators E l i  = (-I)'c,;, Ez; = (-1Yc;. At half filling the 
particle number corresponding to the new operators is the same. In terms of the operators 
E,,, E L  the state Ix)  is an antiferromagnetically ordered state with singly occupied sites. 
Since'in terms of E;", E$ the kinetic-energy term has the same form as in equation (2). in 
this representation the number of doubly occupied sites is conserved and the lower bound 
for the energy of the state with N holes can be obtained using the representation (3) and 
the theorem (5) .  The energy of isolated c and d particles is ZV and their interaction at 
nearest-neighbour sites is -V. Thus the lower bound for the energy as a function of N is 

l u l  

E&V) > (2zV - z max(2t. V )  - U ) N  + U L / 2 .  (19) 
One can see from equation (19) that the wave function (18) is the ground state at 
U e 2zV - z max(2t, V). This ground state is unique apart from a twofold degeneracy 
due to the two sublattices and describes the nonmagnetic insulator. At V > 2t we obtain 
the condition U e zV. Since it was, shown that at U > ZV the ground state is given by 
equation (4). for a bipartite lattice at V > 2r the ground state is found for arbitrary U. In 
the Hubbard model (X = 0, V = 0) the function (4) is the ground-state wave function only 
for U = ca. In, the generalized Hubbard model with X = t this ground state is already 
realized at f i n i t e  U with U > z max(2t, V). Similarly, while in the extended Hubbard 
model (X = 0, V # 0) the function (18) is the ground-state wave function only for V = a?, 
in the generalized Hubbard model with X = t this ground state is already realized at f i n i t e  
V .  

3. Generalized Nubbard  modet in one dimension 

Let us consider the generalized Hubbard model (2) in one dimension. Before considering 
the model (2) let us study the ground-state multiplicity (the value of the total spin) in the 
cases when the model is exactly solvable in one dimension. Namely we consider the model 
(2) at V = 0 and at V # 0 in t h ~  sector with no doubly occupied sites. 

For the one-dimensional system two different cases can be considered (1) the case of 
an open chain; (2) the case of a closed chain of finite length. Both cases are equivalent in 
the thermodynamic limit ( L  -+ a?). First, consider an open chain or equivalently a chain 
of infinite length. In this case the Nagaoka theorem is valid at an arbitrary number of holes 
and doubly occupied sites since the Hamiltonian (2) is invariant under the transformation 
which changes the statistics of holes. In other words for an open chain the holes can be 
considered as bosons. That does not mean that the eigenstates with S < S,,, cannot be 
degenerate in energy with the state S = Sma. In fact all the eigenstates including the ground 
state are degenerate in the total spin S. For example let us consider the eigenstates of the 
Hamiltonian (2) without the doubly occupied sites. At V = 0 in the case when the numbers 
of both c and d particles are not equal to zero we get the additional degeneracy of the 
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eigenstates due to the two species of particle. Let us seek the ground-state wave function 
in the following form: 

@ ( i i ,  .~. . , i N I I t .  . . . , I M )  = @o(il, . . . , i ~ ) $ ( h l ,  . . . , AM) (20) 
where i, are the coordinates of c particles (N = N,) and Ap are the coordinates of the 
spin bosons on a 'supperlattice' which consists of L1 = L - N lattice sites which are not 
occupied by the holes ( L I  = N ,  is the number of electrons) 

(Y = I. .... M .  
N 

A. = I ,  -CO(Z, - i p )  
B=I 

If $0 is the eigenstate of the Hamiltonian (2) in the sector S = S,, then the wave function 
(20) is the eigenfunction of the Hamiltonian for an arbitrary function @(il, . . . , AM). Thus 
the ground state is degenerate in the total spin S .  Let us turn to the case (2) and see how 
this degeneracy is resolved at finite L.  Note that unlike the open chain, for the closed chain 
the spectrum depends on the statistics of particles. The coordinates on a superlattice can be 
defined in the same way by fixing the initial and the final sites of the chain (lm = 1, , . . , L 
and A, = 1 ,  . . . . L I ) .  After the substitution (20) we consider the functions @O and @o 
extended to the infinite chain and subjected to the appropriate boundary conditions. In 
order to satisfy the periodic boundary conditions for the function $ (20) the functions 
$o(il, . . . , i N )  and @ ( A I ,  . . . , A M )  should satisfy the following boundary conditions: 

@(Ai.  . . . . Am + L I ,  . . . , AM) =@(AI. . . ., A,, . .., A M )  , (21)  
and 

$ d i d ,  . . . , i, + L .  . . . . iN) = exp(iq)$o(il, . . . , i,, . . . , i ~ )  (22) 

= 1, ..., M 

where the boundary conditions for the function @o are determined by the total momentum 
q corresponding to the function @: 

@(AI + 1 ,  . . . , AM + 1) = €"'@(Ai. . . . , AM). (23) 
The periodic function @ is the symmetric function of its arguments which vanishes at 
A, = Ap. At arbitrary V the function $0 is determined by the set of the momenta k,, 
a = l ,  . _ . ,  N. Theenergyis 

N 

E = -2t C c o s k , .  
oL=l 

For instance at V =.O we have the free fermion determinant 

+O = det [exp(ik&)] k, = 2nn,/L 
UP 

where n, are integers. The periodic function @ can be characterized by the set of momenta 
qo = 2nm,/LI where m, are integers or half integers (see below). An arbitrary number 
of zeros q m  = 0 is possible which corresponds to the value of the difference S - S'. The 
total momentum q = E, 2nm,/L1. Thus we obtain the equation for the momenta k,: 

M 

As a basis in the space of the symmetric functions (21) one can choose the eigenstates of 
the Hamiltonian of the free hard-core bosons (XX model) on a chain of length L1 .  In this 
case m, are integers (half integers) for M odd (even), and m, # mp for (Y # @. This 
automatically gives the eigenfunctions of the Hamiltonian (2). However, in general these 



11066 A A Ovchinnikov 

functions are not the eigenfunctions of the operator of the total spin S. In order to classify 
the eigenstates according to their spin one can choose the basis given by the eigenstates of 
the Heisenberg ferromagnet. In this case an arbitrary number of the momenta qu can be 
equal to zero and the non-zero momenta are determined by the system of equations 

The total spin S = IL1/2- MI, where M is the number of the non-zero momenta. The total 
momentum is q = E, 2nm,/L1 and we obtain the equation (24) where n, are integers 
and mu are integers (half integers) for M odd (even) (we assume L to be even). The 
same formulas could be obtained starting from the problem of Ne spinless fermions and the 
hard-core bosons (upturned spins) on a ‘superlattice’ consisting of the lattice sites occupied 
by the electrons. The only difference is the number of the momenta k,: 01 = I ,  . . . , Ne. 
In this representation the same results could be obtained by taking the limit U + cc in the 
exact Bethe unzutz solution of the 1.D Hubbard model [I51 (for example see [16]). In fact 
one can redefine the quantum numbers according to n, 4 n, - ~ M / 2 ,  m, 4 m, + L I  /2 to 
obtain the equation (24) with n, integers (half integers) for M even (odd) and m, integers 
(half integers) for (L1 - M) odd (even) in agreement with the results of [ I Q .  

From equation (24) the ground-state energy as a function of the total spin can be found. 
As an example consider the splitting of the energy levels with S = S,, and S = Smx- I for 
an even number of holes (L is assumed to be even). Clearly the ground state corresponds 
to the values q = 0 and q = n respectively and the value Eo = EO(&,, - 1) is an 
absolute ground-state energy. Thus we obtain the energy EO(&,,) = Eocos(n/L), where 
Eo = -2r (sin(n/L))-’ s in (nN/L) .  For all S e S,, - 1 the minimal energy levels are 
nearly degenerate (i.e. the energy splitting is of higher order in 1 /L  at large L )  with the 
ground-state energy Eo. A similar picture can be obtained for N odd. In this case we find 
E(&,) = Eo (M = 0, q = 0) in agreement with the Nagaoka theorem (N = I). Clearly 
the same procedure (20)-(25) could be performed at arbitrary V if the doubly occupied 
sites are absent, or at V = 0 and an arbitrary number of the doubly occupied sites. For 
instance in the first case the Bethe anzurz equations for the wave function @O (20) with 
twisted boundary conditions (22) should be used. 

Let us consider the model (2) at arbitrary U and arbitrary filling fraction Z. It was 
proved that in the thermodynamic limit the eigenstates are degenerate. Thus it is sufficient 
to consider the eigenstates with S = SL = Sm,, which corresponds to the absence of the 
spin bosons. First, consider the model at V = 0. At V = 0 the system is equivalent to 
the system of free fermions with an extra degeneracy due to the two different species of 
particles, (c, d )  with an infinite on-site repulsion. The density of doubly occupied sites 
p = NJL is determined by the minimum of the energy of free fermions with the total 
density no + 2p, 

(26) 
2f . Eo(p)/L = --sin [a(no f 2p)I f U p  
H 

where no = 1 - ii is the concentration of holes in the limit of large U. Thus at U > U, 
where 

Uc = 4r cos(nn0) 

the transition to the state with no doubly occupied sites, p = 0, takes place. OF course 
at no i: 0 the point U = U, is not related to the metal-insulator transition. Away from 
half filling the analogue of the ground state (18) i.e. the ground state without the singly 
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occupied sites is realized at U < -4t. At V # 0 the model is not exactly solvable in the 
sector of Hilbert space with the doubly occupied sites. In the previous section it was shown 
that at arbitrary V e 2t and U > 4t we have the number of doubly occupied sites N = 0 
(really N = 0 at U > U, where the critical value Uc < 4t). At these values the ground 
state is equivalent to the ground state of the Heisenberg chain with the anisotropy parameter 
V/2t in the sector with the projection of the total spin related to the number of holes. The 
spectrum of the anisotropic Heisenberg chain can he determined exactly with the help of 
the Bethe anzatz. Thus in ID the ground state and the low-energy excitations of the model 
(2) can be found exactly at U > U, and an arbitrary ri. At V/2t < 1 and V = 2t the 
spectrum of charge excitation is gapless and the system is a metal (if the number of holes 
no > 0). The same is true for V/2r z 1 and no < 1/2. Note that away from half filling 
the transition between the state with no doubly occupied sites and the state with no singly 
occupied sites analogous to the states (4) and (18) does not take place at U = 2V under 
the condition V/2t  > 1. If the concentration of holes is exactly no = $ and V > 2t there 
is a gap in the spectrum of charge excitations [17]. Thus at the filling fraction r 7 , ~  = E2 = 4 
the system undergoes another metal-insulator transition at the point V = 2r. In general the 
model (2)  is not exactly solvable in the sector with a non-zero number of doubly occupied 
sites. . 

Although at the point of metal-insulator transition the ground state is ferromagnetic 
tor two- and three-dimensional systems and degenerate in the total spin in one dimension 
the existence of the transition is not connected with the ferromagnetic order. In fact the 
metal-insulator transition is a general phenomenon in models with the kinetic-energy term 
conserving the number of doubly occupied sites (2). For example one can study the metal- 
insulator transition in the one-dimensional models with an antiferromagnetic coupling which 
are exactly solvable in the absence of doubly occupied sites [18, 19, 201. Apart from the 
term -X ( X  = t )  and the on-site repulsion -U these models include the interaction of the 
form I C(S;Sj - $ninj)  or J c ( S i S j +  $rainj) at J = 2t. Although these~models are not 
exactly solvable at N # 0 at the half filling the existence of a metal-insulator transition 
can be shown and the critical value of U can be found exactly U, = 2zt In2. The model 
which is exactly solvab!e at arbitrary N was proposed in [5 ] .  The Hamiltonian is the sum 
of the Hamiltonian of the t-J model (modified to include the doubly occupied sites) and 
the permutation term of the form 

2t x(cTcjd:d; + c7c;d:dj). 
{ii)  

One can also change the sign J + -J to obtain the integrable model with the ferromagnetic 
ground state. The ground state of this model is~equivalent to the ground state of the t-J 
model [18] with the up- and down-spin electrons replaced by c and d particles (which 
corresponds to the SU(2) '7-spin' symmetry of [21]). The concentration of d particles 
should be found from the condition of minimum of the energy. 

4. Conclusion 

In conclusion, for the model (2) it  was shown that at half filling and U > z max(2t, V )  the 
ground state is given by equation (4).  the problem with one hole and one doubly occupied 
site in the ferromagnetic background was solved. We proved that it is the lowest-energy state 
in the sector of Hilbert space with one empty and one doubly occupied site. We established 
that at V < 2t the critical value of U corresponding to the point of metal-insulator 
transition U, = 2zt. Under the assumption of the stability of the ferromagnetic state at finite 
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concentration of holes the density of holes was found at V < 2t and U -+ U,. Finally, for 
a bipartire lattice with constant number of nearest neighbours at U < 2zV - 2  max(2t. V )  
the exact ground-state wave function is given by equation (18). At V > 2t the gound state 
is found exactly at arbitrary value of the parameter U. The transition between the states 
(4) and (18) occurs at U = zV.  At V 2t the exact ground state is found at U > 2zt (4) 
and U < 2zV - 2zf (18). For the one-dimensional model at V = 0 the exact solution was 
presented. We have also studied the dependence of the energy on the total spin. Recently 
a part of the results obtained in section 3 was independently obtained in [22]. 
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Appendix 

Following Nagaoka [9], we introduce a set of orthogonal and normalized many-body wave 
functions which completely span the Hilbert space. We use the representation (3 )  in terms 
of the operators of holes c: = czi, doubly occupied sites d; = c: and the overturned spins 
(hard-core bosons) b: = c;c~i starting from the ferromagnetic state xjc$[O). Because 
of the Fermi statistics we have to be cautious about the order of c and d operators in the 
definition of the states 01, 8. Let, for each site i of the lattice, Rj be an integer number 
R; = 1, . . , , L. We can define the following order among the lattice sites. Setting up the 
coordinate system we assign a pair of integer coordinates (&, i,) to each site of the lattice. 
If for the two sites i, j i, < jx  then we define Rj < R,. When ix = j, the order is 
determined by their y coordinates: Ri c Rj for i, < j,. With this order we now introduce 
the states 

lor) = c: . . . c: d z  . . . d i  b l  . . . bL10) 

where the order of the operators for a given set of the lattice sites 01 = 
(il ... i , ~ I j j  ... j,+Il~ ... 1 , ~ )  is given by the condition 

Ri, c .. . < Rj,, Rj, < ... < RjN Rl, < .. . < RI,. 

With this definition the non-diagonal matrix elements Hmp = (orlfil+’?) of the Hamiltonian 
(3) are equal to --t when one hole (doubly occupied site) changes order with an even number 
of holes (doubly occupied sites). In the opposite case the matrix elements Ha! are equal 
to +t. Clearly for Bose statistics the matrix elements would be equal to --I. Since c and 
d particles are two distinct species of fermion one can use the prescription given by the 
equation for lor). For N = 1 the non-diagonal matrix elements are also equal to -t which 
justifies our statement that the Fermi statistics of c and d particles is not important for the 
case of one hole and one doubly occupied site. Thus for the model (2) the Nagaoka proof 
[9] can be used without modifications for one hole and one doubly occupied site. 
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